

Background

- SBAS should be made available for maritime users
- Equipment standards are not yet available for using SBAS for navigation under SOLAS rules
- There already exists equipment standards for GPS, GLONASS, Galileo and Beidou, as well as for differential GPS and differential GLONASS.
- IMO has issued Recommendation MSC.401(95)
 Performance Standards For Multi-system Shipborne
 Radionavigation Receivers, under which SBAS is
 introduced.

There is a need for a test standard for maritime SBAS

SBAS – Space Based Augmentation System. Examples: EGNOS and WAAS

SOLAS - International Convention for the Safety of Life at Sea

IMO – International Maritime Organization

Background

- GSA, ESA and ESSP have prepared *Draft Guidelines for Manufacturers for the Implementation of SBAS in Shipborne Receivers*
- These guidelines could form the input to an IEC/EN equipment test standard
- To further evolve this work, GSA set up the MAREC project, which is managed by Kongsberg Seatex.

GSA – European GNSS Agency

ESA – European Space Agency

ESSP - European Satellite Services Provider

/3/

MAREC Highlights

- MAREC approach is SBAS, hence not only limited to EGNOS
- MAREC is focused on the legacy SBAS: GPS L1 augmentation
- The aim is to contribute to guidelines for the implementation of SBAS in the maritime, including test specifications
- The algorithms will be implemented and tested in laboratory and in real environment
- MAREC will test equipment in three product categories: SOLAS, non-SOLAS and AIS
- Duration: 24 months, until Q1-2020

SOLAS - International Convention for the Safety of Life at Sea

MAREC - Draft Guidelines for Manufacturers for the Implementation of SBAS in Shipborne Receivers

- use the same SBAS SIS as aviation (MOPS DO229)
- not required to calculate a protection level
- need to calculate quality estimates like position error ellipses and 95% accuracy
- RAIM will be required in line with maritime GPS/DGPS receiver standards (IEC61108-1)
- it will be left to the equipment manufacturer to find suitable algorithms for position solution, accuracy estimates and RAIM
- compliance assessment is done via test
- benefits of this approach:
 - adaptation to the diversity of maritime environments
 - opens up for new innovations

MAREC - Integration of SBAS and IALA DGNSS at User Level

IMO rec. MSC.401(95) Performance Standards for Multi-system Shipborne Radionavigation Receivers

	SBAS Available	SBAS Not available		
DGNSS Available	Combine GPS + SBAS + DGNSS How to combine?	GPS + DGNSS		
DGNSS Not available	GPS + SBAS	Use standalone GPS		

MAREC - Integration of SBAS and IALA DGNSS at User Level

IMO rec. MSC.401(95) Performance Standards for Multi-system Shipborne Radionavigation Receivers

Combining DGNSS and SBAS into a single position

- Combination at position level:
 - Option 1: Use second position for integrity check
 - Option 2: Use a weighted average of the positions
- Combination at pseudo-range level:
 - Requires harmonized error estimates for optimum weight matrix in position and RAIM algorithms
- Using integrity information from SBAS and corrections from DGNSS
 - Not recommended, as SBAS integrity is linked to SBAS corrections

Is there a need to standardize how to combine the systems?

EU Marine Equipment Directive (MED)

GILFAN [CC BY-SA 3.0 (https://creativecommons.or g/licenses/by-sa/3.0)]

EU Marine Equipment Directive (MED)

KONGSBERG

1	2	3	4	5	6
MED/4.14 GPS equipment	Type approval requirements — SOLAS 74 Reg. V/18,	— EN 60945:2002 incl. IEC 60945 Corr. 1: 2008,	B+D B+E	13.9.2019	
(NEW ROW)	— SOLAS 74 Reg. X/3,	— EN 61108-1:2003,	B+F		
(AZW ROW)	— IMO Res.MSC.36(63)-(1994 HSC Code) 13,	— EN 61162 series:	G		
	— IMO Res.MSC.97(73)-(2000 HSC Code) 13.	EN 61162-1: 2016	J		
		EN 61162-2: 1998			
_		EN 61162-3: 2008 +A1: 2010 +A2:2014			
	Carriage and performance requirements	IEC 61162-450:2018,			
	— SOLAS 74 Reg. V/19,	— EN 62288:2014,			
	— IMO Res.A.694(17),	— IEC 62923-1:2018,			
	— IMO Res.MSC.36(63)-(1994 HSC Code) 13,	— IEC 62923-2:2018.			
	— IMO Res.MSC.97(73)-(2000 HSC Code) 13.	Or:			
	IMO Res.MSC.112(73),IMO Res.MSC.191(79),	— IEC 60945:2002 incl. IEC 60945 Corr. 1: 2008,			
	— IMO Res.MSC.302(87).	— IEC 61108-1 Ed. 2.0: 2003,			
		— IEC 61162 series:			
		IEC 61162-1:2016			
		IEC 61162-2 ed1.0: 1998-09			
		IEC 61162-3 ed1.2 Consol. with A1 Ed. 1.0: 2010-11 and A2 Ed. 1.0: 2014-07			
		IEC 61162-450:2018,			
		— IEC 62288 Ed. 2.0: 2014-07,			
		— IEC 62923-1:2018,			
		— IEC 62923-2:2018.			

What is required for type approval of SBAS receiver equipment within MED?

- IMO level, alternative approaches:
 - A new performance standard for SBAS receiver equipment
 - Or using as reference the existing <u>MSC.401(95)</u> PERFORMANCE STANDARDS FOR MULTI-SYSTEM SHIPBORNE RADIONAVIGATION RECEIVERS
 - Other approaches?
- IEC/EN level test standard:
 - Modify existing GPS/DGPS test standards (IEC61108-1 and -4)
 - Or prepare new test standard for a GPS receiver augmented with SBAS
 - Other approaches?
- In MAREC we use the DGPS test standard as model for the content of the SBAS test standard

MAREC - equipment testing

- Tests are developed on basis of the Draft Guidelines for Manufacturers for the Implementation of SBAS in Shipborne Receivers
- Testing to be done for the following equipment categories:
 - SOLAS
 - Non-SOLAS
 - AIS
- Testing to be done in laboratory and on sea using live EGNOS and GPS
- Equipment tests will provide feedback on the feasibility of the tests in the draft guidelines

SOLAS and non-SOLAS

 The SBAS Guidelines will be implemented and tested in a Kongsberg SeaPos 320 unit for SOLAS applications, and in a Kongsberg DPS 132 unit for non-SOLAS applications.

GPS + DGPS + SBAS

AIS – Automatic Identification System

 Additionally, a Kongsberg AIS 300 unit will be used in the Sea Trials. The navigation performance will be compared with SeaPos 320.

 Open question on AIS standard: Should position derived with SBAS be reported as a non-differential or as a differential position?

Next steps and beyond

- In MAREC project:
 - Equipment testing based on proposed test standard
 - provide feedback on guidelines and test standard
- Beyond MAREC:
 - finalization of test standard, possibly within IEC TC80

WORLD CLASS - through people, technology and dedication

- include SBAS equipment with relevant standards in MED
- work should also be started for maritime standardization of the new DFMC SBAS.
- Ideally a DFMC SBAS test standard for maritime equipment should be available well in advance of the service becoming operational

MED – Marine Equipment Directive

The MAREC project will test the equipment with simulator and in a real environment in the Trondheim Fjord test area for autonomous vessels.